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General Framework

e Partial differential equations (PDEs) are ubiquitous in
mathematically-oriented scientific fields such as physics and
engineering.

@ Analytical solutions of PDEs are NOT always available = solve the
problem with numerical methods.

@ A plethora of methods exist:

o Finite Difference Method
o Finite Element Method
o Finite Volume Method

e Spectral Method

o Meshfree Method

o
o

Virtual Element Method (VEM)

2/ 19



Virtual Element Method (VEM)

e The Virtual Element Method (VEM) is a very recent numerical
method for solving PDEs.
o Seminal paper:

o L. Beirdo da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini,
A.Russo: Basic principles of Virtual Element Methods, Mathematical
Models and Methods in Applied Sciences, 2013.

e The VEM generalizes the Finite Element Method (FEM)

o FEM faces considerable difficulties on general polygonal meshes;
o VEM allows to solve PDEs on very general polygonal meshes.
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VEM: model problem

@ Continuous problem:
—Au=finQCR? u=0ond9.

@ Variational formulation:
find u € H}(Q) s.t. a(u,v) = (f,v), Vv e H}Q),
a(u,v) = (Vu, Vv) bilinear form and (-,-) = scalar product in L2.

e VEM fundamental ingredients:
o A decomposition (mesh) 75 of Q into polygons E.
o A finite dimensional functional space V§ C H}() (global virtual
element space).
o A bilinear form a; : V(sk X V5k — R that can be split over the polygons,
ie., 35(U5, V5) = ZEETJ af(u(;, Vg), us, Vvs € Vék.
The local bilinear form a§ must be computable and must satisfy
o polynomial consistency
o stability
o Construction of the right-hand side.

4 /19



VEM: model problem

Virtual Element Space
@ The global space is constructed from the local spaces.

@ On each polygon E, define a local virtual element space Vé(’E:
o polynomials of degree k + additional functions solution of a suitable
PDE inside E.
@ Take the following degrees of freedom in Vé(’E. Let v5 € Vé(’E
@ values of vs at the vertices of E;

@ for k > 1, values of vs at the k — 1 internal points of the
Gauss-Lobatto quadrature rule on each edge e;

@ for k > 1, the momentum % fE vs mdx, m e M_»(E) set of scaled
monomials of degree < k — 2.



VEM: model problem

o Introduce the following orthogonal projection operators:
o H'(E)-orthogonal projection operator MMy - : H'(E) — P(E).
o L?(E)-orthogonal projection operator M{_,; ¢ : L*(E) = Px_1(E).
o Computable using the degrees of freedom.
@ A choice of the local bilinear form af that satisfies consistency and
stability

af(w, V5) = (VHXEU&VHXEV(S) + SE((/ — HXE)U5, (/ — HXE)Vg),

for the stabilization form SE different choices exist.
@ A choice for the right-hand side

(f7 n?{—lvts)'
o Finally, the VEM discrete variational formulation reads

find us € V5k s.t. Z af(u¢;, vs) = (F,N9_;vs), Vs e V(;k.
EcTs
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Two-phase flow in porous media

@ Complex and realistic geological flow models in porous media
e large scale problems, domains displaying complex geometries.
o I|dea: investigate the potentialities of VEM in the contest of
two-phase flow of immiscible fluids in porous media.
o Applications: petroleum and chemical engineering, hydrology, nuclear
waste disposal safety.

Concepts:
o Porous medium = porous matrix + void space.
e Two-phase flow: void space filled by two immiscible fluids
o wetting phase (w);
e non-wetting phase (n).




Two-phase flow equations

For each phase (o = w, n) find S, (saturation), u, (Darcy's velocity) and
po (pressure) in the space-time domain QT = Q x Z7 s.t.

( 6(4)59’(;5&) + V- (pala) = paga
uo = —32K(Vpa — pag)
Sw+Sh=1 (1)
Pn = Pw = Pc

| + boundary and initial conditions.

Pc(Sa) and ki, (So) = Brooks-Corey empirical model.

Equations (1) are:
e time dependent;
@ non-linear;

@ coupled.
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Pressure-Saturation Formulation

Rewrite (1) using the pressure-saturation formulation (p, — Sy)
@ Goal: find S, and p,

v'{K/\an - K)\sz%vsw + K()‘pr + )\npn)g)} = 4q,
G5 7. {KAW%VSW — KAV + KAWpr} — G, ()
+ boundary and initial conditions.

@ Pressure equation = elliptic w.r.t. pp;

@ Saturation equation = non-linear hyperbolic (p. = 0) or parabolic
(pc #0) w.r.t. Sy .
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Pressure-Saturation Formulation

Equations (2) are non-linearly coupled

o Traditional approaches:
o Fully Implicit Method (FIM) or operator splitting techniques (IMPES,
IMPIS) + classical space discretization scheme (Finite Elements, Finite
Volumes, Discontinuous Galerkin methods).

@ Our approach:
o lterative IMplicit-Pressure-Implicit-Saturation (IMPIS) method +
Virtual Element Method (VEM)

@ The time discretization with Crank-Nicolson scheme gives rise to a
fully implicit and coupled system;

@ Linearize the saturation equation with respect to the saturation using
Newton-Raphson method and adopt an iterative IMPIS formulation to
split the pressure and the saturation equations and solve them

iteratively.
© Discretize in space using the Virtual Element Method.
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Numerical Experiments - analytical solution

Analysis of the convergence of the method in case the analytical
solution is known.

@ Space and time domain
Q=(0,1) x (0,1) [m?], Z7 =10,1] [s].
@ Analytical solutions
Pre (¥, 1) =10° - t x(1 = x)y(1 —y) [Pa],
Sunliy,t) =5+ tx(1—x)y(1-y) []

e Physical data for the porous medium and the fluids: porosity (®),
absolute permeability (K), residual saturations (Swr, Snr), viscosities
(tw, 1n), Brooks-Corey parameters (1, pq)-
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Numerical Experiments - analytical solution

@ Four meshes made up of different types of polygonal tessellations

(a) Triangle (b) Square (c) Polygon  (d) Agglomerated

Figure 1: Meshes.
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Numerical Experiments - analytical solution

o Order of convergence in H' norm
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Figure 2: VEM order k = 1.
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Figure 3: VEM order k = 3.
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Benchmark problem

A benchmark problem for two-phase flow having quasi-analytical solution
(parabolic case).

@ McWhorter and Sunada (p. # 0) - Bidirectional flow

(as)_oé dp. 95,
pe
5 T 8(Kf)\d5 ax)

@ It involves the flow of two immiscible and incompressible fluids (water
and oil) through a one-dimensional horizontal porous medium
representing a reservoir.

@ Originally mono-dimensional = to verify the code on a bi-dimensional
domain, solve a 2D problem assuming constant solution on the y
direction.
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Benchmark problem (Saturation S, k = 1)

@ Polygonal mesh
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(a) Sw: semi-analytical solution. (b) Su: numerical solution.
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(c) Sw: semi-analytical solution. (d) Sw: numerical solution.
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Benchmark problem (Polygonal mesh refinement)

e Qualitative converge of the numerical saturation to the semi-analytical
solution through mesh refinement.

————
0 s 57

(e) Ns =154, At =10s.

(g) N5 =2463, At =25s. (h) N5 =9911, At =1.25s.
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Benchmark problem (Pressure p,, k = 1)

@ Polygonal mesh
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(1) pn: semi-analytical solution. (J) pn: numerical solution.
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(k) pn: semi-analytical solution. (1) pn: numerical solution.
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Conclusions

e VEM is a new method and a lot of work is still needed to assess pros
and cons.

e Many VEM key features make VEM a competitive alternative to
other numerical methods for PDEs.

o VEM is a numerical tool with potentialities in solving complex and
realistic geological flow models.

@ A lot more is still to be explored!
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Thank you for your attention!

“Don't let anyone rob you of your imagination,
your creativity, or your curiosity. It's your place
in the world; it's your life. Go on and do all you

can with it, and make it the life you want to live.’
Mae Jemison - first African American woman astronaut.
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