Numerical Modelling in Porous Media using the Virtual Element Method

PhD student Martina Busetto Politecnico di Torino - Università degli Studi di Torino

Supervisor Professor Stefano Berrone Politecnico di Torino

《曰》 《聞》 《注》 《注》 三注

International Day of Women and Girls in Science February 11, 2021

- General Framework
- Ø Virtual Element Method: model problem
- **③** Virtual Element Method: applications in Porous Media

< 3 > < 3 >

1 / 19

Onclusions

- Partial differential equations (PDEs) are ubiquitous in mathematically-oriented scientific fields such as physics and engineering.
- Analytical solutions of PDEs are NOT always available ⇒ solve the problem with numerical methods.

- A plethora of methods exist:
 - Finite Difference Method
 - Finite Element Method
 - Finite Volume Method
 - Spectral Method
 - Meshfree Method
 - . . .
 - Virtual Element Method (VEM)

Virtual Element Method (VEM)

- The Virtual Element Method (VEM) is a very recent numerical method for solving PDEs.
 - Seminal paper:
 - L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A.Russo: Basic principles of Virtual Element Methods, Mathematical Models and Methods in Applied Sciences, 2013.
- The VEM generalizes the Finite Element Method (FEM)
 - FEM faces considerable difficulties on general polygonal meshes;
 - VEM allows to solve PDEs on very general polygonal meshes.

VEM: model problem

• Continuous problem:

$$-\Delta u = f \text{ in } \Omega \subset \mathbb{R}^2, \quad u = 0 \text{ on } \partial \Omega.$$

• Variational formulation:

$$\text{find } u\in H^1_0(\Omega) \ \text{ s.t. } \ \textit{a}(u,v)=(f,v), \ \forall v\in H^1_0(\Omega),$$

 $a(u, v) = (\nabla u, \nabla v)$ bilinear form and $(\cdot, \cdot) =$ scalar product in L^2 .

- VEM fundamental ingredients:
 - A decomposition (mesh) \mathcal{T}_{δ} of Ω into polygons E.
 - A finite dimensional functional space V^k_δ ⊂ H¹₀(Ω) (global virtual element space).
 - A bilinear form $a_{\delta} : V_{\delta}^k \times V_{\delta}^k \to \mathbb{R}$ that can be split over the polygons, i.e., $a_{\delta}(u_{\delta}, v_{\delta}) = \sum_{E \in \mathcal{T}_{\delta}} a_{\delta}^{E}(u_{\delta}, v_{\delta}), \ u_{\delta}, v_{\delta} \in V_{\delta}^{k}$.

The local bilinear form a_{δ}^{E} must be **computable** and must satisfy

- polynomial consistency
- stability
- Construction of the right-hand side.

イロト 不得下 イヨト イヨト

VEM: model problem

Virtual Element Space

- The global space is constructed from the local spaces.
- On each polygon *E*, define a local virtual element space $\mathcal{V}_{\delta}^{k,E}$:
 - polynomials of degree k + additional functions solution of a suitable PDE inside E.
- Take the following degrees of freedom in $\mathcal{V}_{\delta}^{k,\mathcal{E}}$. Let $v_{\delta} \in \mathcal{V}_{\delta}^{k,\mathcal{E}}$
 - **(**) values of v_{δ} at the vertices of E;
 - Go for k > 1, values of v_δ at the k 1 internal points of the Gauss-Lobatto quadrature rule on each edge e;
 - **③** for k > 1, the momentum $\frac{1}{|E|} \int_E v_\delta m \, \mathrm{d} \mathbf{x}$, $m \in \mathcal{M}_{k-2}(E)$ set of scaled monomials of degree ≤ k 2.

VEM: model problem

- Introduce the following orthogonal projection operators:
 - $H^1(E)$ -orthogonal projection operator $\Pi_{k,E}^{\nabla}$: $H^1(E) \to \mathbb{P}_k(E)$.
 - $L^2(E)$ -orthogonal projection operator $\Pi^{0}_{k-1,E}: L^2(E) \to \mathbb{P}_{k-1}(E)$.
 - Computable using the degrees of freedom.
- A choice of the local bilinear form a_{δ}^{E} that satisfies consistency and stability

 $a_{\delta}^{E}(u_{\delta}, v_{\delta}) := (\nabla \Pi_{k, E}^{\nabla} u_{\delta}, \nabla \Pi_{k, E}^{\nabla} v_{\delta}) + S^{E}((I - \Pi_{k, E}^{\nabla})u_{\delta}, (I - \Pi_{k, E}^{\nabla})v_{\delta}),$

for the stabilization form S^E different choices exist.

• A choice for the right-hand side

$$(f, \Pi^0_{k-1}v_\delta).$$

Finally, the VEM discrete variational formulation reads

find
$$u_{\delta} \in V_{\delta}^{k} \ s.t. \ \sum_{E \in \mathcal{T}_{\delta}} a_{\delta}^{E}(u_{\delta}, v_{\delta}) = (f, \Pi_{k-1}^{0}v_{\delta}), \ \forall v_{\delta} \in V_{\delta}^{k}.$$

白マ イヨマ イヨマ

Two-phase flow in porous media

- Complex and realistic geological flow models in porous media
 large scale problems, domains displaying complex geometries.
- <u>Idea</u>: investigate the potentialities of VEM in the contest of two-phase flow of immiscible fluids in porous media.
 - Applications: petroleum and chemical engineering, hydrology, nuclear waste disposal safety.

Concepts:

- Porous medium = porous matrix + void space.
- Two-phase flow: void space filled by two immiscible fluids
 - wetting phase (w);
 - non-wetting phase (n).

Two-phase flow equations

For each phase $(\alpha = w, n)$ find S_{α} , (saturation), u_{α} (Darcy's velocity) and p_{α} (pressure) in the space-time domain $Q_T = \Omega \times \mathcal{I}_T$ s.t.

$$\begin{cases} \frac{\partial (\Phi \rho_{\alpha} S_{\alpha})}{\partial t} + \nabla \cdot (\rho_{\alpha} \mathbf{u}_{\alpha}) = \rho_{\alpha} q_{\alpha} \\ \mathbf{u}_{\alpha} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \mathsf{K}(\nabla p_{\alpha} - \rho_{\alpha} \mathbf{g}) \\ S_{w} + S_{n} = 1 \\ p_{n} - p_{w} = p_{c} \\ + \text{ boundary and initial conditions.} \end{cases}$$
(1)

• • = • • = •

8 / 19

 $p_c(S_\alpha)$ and $k_{r_\alpha}(S_\alpha) \Rightarrow$ Brooks-Corey empirical model.

Equations (1) are:

- time dependent;
- non-linear;
- coupled.

Rewrite (1) using the pressure-saturation formulation $(p_n - S_w)$

- Goal: find S_{w} and p_{n} $\begin{cases}
 -\nabla \cdot \left\{ \mathsf{K}\lambda \nabla p_{n} - \mathsf{K}\lambda_{w} \frac{dp_{c}}{dS_{w}} \nabla S_{w} + \mathsf{K}(\lambda_{w}\rho_{w} + \lambda_{n}\rho_{n})\mathbf{g}) \right\} = q, \\
 \Phi \frac{\partial S_{w}}{\partial t} + \nabla \cdot \left\{ \mathsf{K}\lambda_{w} \frac{dp_{c}}{dS} \nabla S_{w} - \mathsf{K}\lambda_{w} \nabla p_{n} + \mathsf{K}\lambda_{w}\rho_{w}\mathbf{g} \right\} = q_{w}, \\
 + boundary and initial conditions.
 \end{cases}$ (2)
- Pressure equation \Rightarrow elliptic w.r.t. p_n ;
- Saturation equation \Rightarrow non-linear hyperbolic ($p_c = 0$) or parabolic ($p_c \neq 0$) w.r.t. S_w .

Equations (2) are non-linearly coupled

- Traditional approaches:
 - Fully Implicit Method (FIM) or operator splitting techniques (IMPES, IMPIS) + classical space discretization scheme (Finite Elements, Finite Volumes, Discontinuous Galerkin methods).
- Our approach:
 - Iterative IMplicit-Pressure-Implicit-Saturation (IMPIS) method + Virtual Element Method (VEM)
 - - In the time discretization with Crank-Nicolson scheme gives rise to a fully implicit and coupled system;
 - 2 Linearize the saturation equation with respect to the saturation using Newton-Raphson method and adopt an iterative IMPIS formulation to split the pressure and the saturation equations and solve them iteratively.

通 とう きょう う きょう

10 / 19

Oiscretize in space using the Virtual Element Method.

Analysis of the **convergence** of the method in case the **analytical solution** is known.

• Space and time domain

$$\Omega = (0,1) \times (0,1) \ [m^2], \ \ \mathcal{I}_T = [0,1] \ [s].$$

Analytical solutions

$$p_{n_{ex}}(x, y, t) = 10^5 \cdot t \ x(1-x)y(1-y) \quad [Pa],$$

$$S_{w_{ex}}(x, y, t) = \frac{1}{2} + t \ x(1-x)y(1-y) \quad [-].$$

Physical data for the porous medium and the fluids: porosity (Φ), absolute permeability (K), residual saturations (S_{wr}, S_{nr}), viscosities (μ_w, μ_n), Brooks-Corey parameters (μ, p_d).

Numerical Experiments - analytical solution

• Four meshes made up of different types of polygonal tessellations

(B)

Numerical Experiments - analytical solution

• Order of convergence in H^1 norm

Figure 2: VEM order k = 1.

Figure 3: VEM order k = 3.0 , and k = 3.0 , and k = 3.0 , and k = 3.0 , the set of the set

A **benchmark problem** for two-phase flow having quasi-analytical solution (parabolic case).

• McWhorter and Sunada ($p_c \neq 0$) - Bidirectional flow

$$\begin{cases} u(x,t) = 0, \\ \Phi \frac{\partial S_w}{\partial t} + \frac{\partial}{\partial x} \Big(K f_w \lambda_n \frac{dp_c}{dS_w} \frac{\partial S_w}{\partial x} \Big) = 0. \end{cases}$$

- It involves the flow of two immiscible and incompressible fluids (water and oil) through a one-dimensional horizontal porous medium representing a reservoir.
- Originally mono-dimensional ⇒ to verify the code on a bi-dimensional domain, solve a 2D problem assuming constant solution on the y direction.

(4 個) (4 回) (4 回) (5 回

Benchmark problem (Saturation S_w , k = 1)

Polygonal mesh

0.1

0.6

Benchmark problem (Polygonal mesh refinement)

 Qualitative converge of the numerical saturation to the semi-analytical solution through mesh refinement.

(f) $\mathcal{N}_{\delta} = 619, \ \Delta t = 5 \ s.$

Benchmark problem (Pressure p_n , k = 1)

Polygonal mesh

- VEM is a new method and a lot of work is still needed to assess pros and cons.
- Many VEM key features make VEM a competitive alternative to other numerical methods for PDEs.
- VEM is a numerical tool with **potentialities** in solving complex and realistic geological flow models.

18 / 19

• A lot more is still to be explored!

Thank you for your attention!

"Don't let anyone rob you of your imagination, your creativity, or your curiosity. It's your place in the world; it's your life. Go on and do all you can with it, and make it the life you want to live." Mae Jemison - first African American woman astronaut.

