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General Framework

Partial differential equations (PDEs) are ubiquitous in
mathematically-oriented scientific fields such as physics and
engineering.
Analytical solutions of PDEs are NOT always available ⇒ solve the
problem with numerical methods.
A plethora of methods exist:

Finite Difference Method
Finite Element Method
Finite Volume Method
Spectral Method
Meshfree Method
. . .
Virtual Element Method (VEM)
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Virtual Element Method (VEM)

The Virtual Element Method (VEM) is a very recent numerical
method for solving PDEs.

Seminal paper:
L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini,
A.Russo: Basic principles of Virtual Element Methods, Mathematical
Models and Methods in Applied Sciences, 2013.

The VEM generalizes the Finite Element Method (FEM)
FEM faces considerable difficulties on general polygonal meshes;
VEM allows to solve PDEs on very general polygonal meshes.
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VEM: model problem

Continuous problem:
−∆u = f in Ω ⊂ R2, u = 0 on ∂Ω.

Variational formulation:

find u ∈ H1
0 (Ω) s.t. a(u, v) = (f , v), ∀v ∈ H1

0 (Ω),

a(u, v) = (∇u,∇v) bilinear form and (·, ·) = scalar product in L2.

VEM fundamental ingredients:
A decomposition (mesh) Tδ of Ω into polygons E .
A finite dimensional functional space V k

δ ⊂ H1
0 (Ω) (global virtual

element space).
A bilinear form aδ : V k

δ × V k
δ → R that can be split over the polygons,

i.e., aδ(uδ, vδ) =
∑

E∈Tδ a
E
δ (uδ, vδ), uδ, vδ ∈ V k

δ .
The local bilinear form aEδ must be computable and must satisfy

polynomial consistency
stability

Construction of the right-hand side.
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VEM: model problem

Virtual Element Space
The global space is constructed from the local spaces.

On each polygon E , define a local virtual element space Vk,Eδ :
polynomials of degree k + additional functions solution of a suitable
PDE inside E .

Take the following degrees of freedom in Vk,Eδ . Let vδ ∈ Vk,Eδ
1 values of vδ at the vertices of E ;
2 for k > 1, values of vδ at the k − 1 internal points of the

Gauss-Lobatto quadrature rule on each edge e;
3 for k > 1, the momentum 1

|E |
∫
E
vδ m dx, m ∈Mk−2(E ) set of scaled

monomials of degree ≤ k − 2.
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VEM: model problem

Introduce the following orthogonal projection operators:
H1(E )-orthogonal projection operator Π∇k,E : H1(E )→ Pk(E ).
L2(E )-orthogonal projection operator Π0

k−1,E : L2(E )→ Pk−1(E ).
Computable using the degrees of freedom.

A choice of the local bilinear form aEδ that satisfies consistency and
stability

aEδ (uδ, vδ) := (∇Π∇k,Euδ,∇Π∇k,Evδ) + SE ((I − Π∇k,E )uδ, (I − Π∇k,E )vδ),

for the stabilization form SE different choices exist.

A choice for the right-hand side

(f ,Π0
k−1vδ).

Finally, the VEM discrete variational formulation reads

find uδ ∈ V k
δ s.t.

∑
E∈Tδ

aEδ (uδ, vδ) = (f ,Π0
k−1vδ), ∀vδ ∈ V k

δ .
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Two-phase flow in porous media

Complex and realistic geological flow models in porous media
large scale problems, domains displaying complex geometries.

Idea: investigate the potentialities of VEM in the contest of
two-phase flow of immiscible fluids in porous media.

Applications: petroleum and chemical engineering, hydrology, nuclear
waste disposal safety.

Concepts:
Porous medium = porous matrix + void space.
Two-phase flow: void space filled by two immiscible fluids

wetting phase (w);
non-wetting phase (n).
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Two-phase flow equations

For each phase (α = w , n) find Sα, (saturation), uα (Darcy’s velocity) and
pα (pressure) in the space-time domain QT = Ω× IT s.t.

∂(ΦραSα)
∂t +∇ · (ραuα) = ραqα

uα = −krα
µα

K(∇pα − ραg)

Sw + Sn = 1
pn − pw = pc

+ boundary and initial conditions.

(1)

pc(Sα) and krα(Sα) ⇒ Brooks-Corey empirical model.

Equations (1) are:
time dependent;
non-linear;
coupled.
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Pressure-Saturation Formulation

Rewrite (1) using the pressure-saturation formulation (pn − Sw )
Goal: find Sw and pn
−∇·

{
Kλ∇pn −Kλw dpc

dSw
∇Sw + K(λwρw + λnρn)g

)}
= q,

Φ∂Sw
∂t +∇ ·

{
Kλw dpc

dS ∇Sw −Kλw∇pn + Kλwρwg
}

= qw ,

+ boundary and initial conditions.

(2)

Pressure equation ⇒ elliptic w.r.t. pn;
Saturation equation ⇒ non-linear hyperbolic (pc = 0) or parabolic
(pc 6= 0) w.r.t. Sw .
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Pressure-Saturation Formulation

Equations (2) are non-linearly coupled
Traditional approaches:

Fully Implicit Method (FIM) or operator splitting techniques (IMPES,
IMPIS) + classical space discretization scheme (Finite Elements, Finite
Volumes, Discontinuous Galerkin methods).

Our approach:
Iterative IMplicit-Pressure-Implicit-Saturation (IMPIS) method +
Virtual Element Method (VEM)

1 The time discretization with Crank-Nicolson scheme gives rise to a
fully implicit and coupled system;

2 Linearize the saturation equation with respect to the saturation using
Newton-Raphson method and adopt an iterative IMPIS formulation to
split the pressure and the saturation equations and solve them
iteratively.

3 Discretize in space using the Virtual Element Method.
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Numerical Experiments - analytical solution

Analysis of the convergence of the method in case the analytical
solution is known.

Space and time domain

Ω = (0, 1)× (0, 1) [m2], IT = [0, 1] [s].

Analytical solutions

pnex (x , y , t) = 105 · t x(1− x)y(1− y) [Pa],

Swex (x , y , t) =
1
2

+ t x(1− x)y(1− y) [−].

Physical data for the porous medium and the fluids: porosity (Φ),
absolute permeability (K), residual saturations (Swr , Snr ), viscosities
(µw , µn), Brooks-Corey parameters (µ, pd).
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Numerical Experiments - analytical solution

Four meshes made up of different types of polygonal tessellations

(a) Triangle (b) Square (c) Polygon (d) Agglomerated

Figure 1: Meshes.
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Numerical Experiments - analytical solution
Order of convergence in H1 norm

Figure 2: VEM order k = 1.

Figure 3: VEM order k = 3.
13 / 19



Benchmark problem

A benchmark problem for two-phase flow having quasi-analytical solution
(parabolic case).

McWhorter and Sunada (pc 6= 0) - Bidirectional flowu(x , t) = 0,

Φ
∂Sw
∂t

+
∂

∂x

(
Kfwλn

dpc
dSw

∂Sw
∂x

)
= 0.

It involves the flow of two immiscible and incompressible fluids (water
and oil) through a one-dimensional horizontal porous medium
representing a reservoir.
Originally mono-dimensional ⇒ to verify the code on a bi-dimensional
domain, solve a 2D problem assuming constant solution on the y
direction.
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Benchmark problem (Saturation Sw , k = 1)

Polygonal mesh

(a) Sw : semi-analytical solution. (b) Sw : numerical solution.

(c) Sw : semi-analytical solution. (d) Sw : numerical solution.
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Benchmark problem (Polygonal mesh refinement)

Qualitative converge of the numerical saturation to the semi-analytical
solution through mesh refinement.

(e) Nδ = 154, ∆t = 10 s. (f) Nδ = 619, ∆t = 5 s.

(g) Nδ = 2463, ∆t = 2.5 s. (h) Nδ = 9911, ∆t = 1.25 s.

16 / 19



Benchmark problem (Pressure pn, k = 1)

Polygonal mesh

(i) pn: semi-analytical solution. (j) pn: numerical solution.

(k) pn: semi-analytical solution. (l) pn: numerical solution.
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Conclusions

VEM is a new method and a lot of work is still needed to assess pros
and cons.
Many VEM key features make VEM a competitive alternative to
other numerical methods for PDEs.
VEM is a numerical tool with potentialities in solving complex and
realistic geological flow models.
A lot more is still to be explored!
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Thank you for your attention!
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