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Introduction

1. Categories and functors
2. Separable functors and applications

3. How can we extend this notion?
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Categories and Functors

o A category € is the datum of a class of objects Ob(C) and a class of morphisms
between them such that for any ordered pair (X, Y) € Ob(C) there is a set
Home (X, Y) of morphisms of X in Y, satisfying some requirements.

e Let C and D be categories. A functor F : € — D consists of:

- amap
Ob(€) — Ob(D), X — F(X)
- for every ordered pair (X, Y) € Ob(C), there is a map
Fx,y : Home (X, Y) = Homq (F(X), F(Y)), f— F(f)
such that

(i) F(fog)=F(f)o F(g), for every f, g € C composable;
(i) F(Idx) = Idg(x), for every object X € C.
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Categories and Functors

e A category C is the datum of a class of objects Ob(C) and a class of morphisms
between them such that for any ordered pair (X, Y) € Ob(C) there is a set
Home (X, Y) of morphisms of X in Y, satisfying some requirements.

e Let C and D be categories. A functor F : € — D consists of:

- a map
Ob(€) — Ob(D), X F(X)
- for every ordered pair (X, Y) € Ob(C), there is a map
Fx,y : Home(X, Y) — Homx (F(X), F(Y)), f+— F(f)
such that

(i) F(fog)=F(f)o F(g), for every f, g € C composable;
(i) F(Idx) = Idg(x), for every object X € C.

Examples

e lde:C—C X=X, f—f
o Forgetful functors: e.g. U: Grp — Set, (G,,1) — G, f — f

o Let ¢ : R — S be a ring homomorphism: ¢* := (=) ®r S : Mg — Mg,
M~ M®grS, f— fQ®glds, is the induction functor.
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Adjunctions

Let F, G : € — D be functors. A natural transformation n: F — G is a class of
morphisms (nx)xee in D such that, for every f : X — Y in C,

F(X) & 6(x)
F() 9G]
F(Y) 7> G(Y)

F
commutes. A pair of functors € == D is an adjunction (F - G) if there are natural
G

transformations 7 : Ide — GF (the unit) and € : FG — Idp (the counit) such that
GeonG = Idg and eF o Fnp = IdF.
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Adjunctions

Let F, G : € — D be functors. A natural transformation n: F — G is a class of
morphisms (nx)xee in D such that, for every f : X — Y in C,

F(X) & 6(x)

F()y) V6
F(Y) == G(Y)

F
commutes. A pair of functors € == D is an adjunction (F - G) if there are natural
G

transformations 7 : Ide — GF (the unit) and € : FG — Idp (the counit) such that
GeonG = Idg and eF o Fnp = IdF.

Example
©*=(-)®rS

Mg Ms, @« is the restriction of scalars functor, the components of the unit
P

and the counit are given by

M= M®rS, nu(m)=mQegrls,

en : N®rS — N, en(n®gs)=ns.
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Special functors

Let F: € — D be a functor and consider the associated natural transformation
fTriHOIIle(—,—)—)HomD(F—,F—), 3~X7y(f):F(f)

forany f: X — Y in C. Then F is

faithful if Tx y is injective for every X, Y
inC ie F(f)=F(g) = f =g, for full if Fx v is surjective for every X, Y € C,
every f,g: X = Y in @ i.e. any morphism F(X) — F(Y)in D is
of the form F(f) for some f : X — Y in C
o Forgetful functors, e.g.
U : Grp — Set e H:Ab — Grp
©x : Ms — Mg
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Separable functors

Definition (N3stdsescu, Van den Bergh, Van Oystaeyen, 1989)

A functor F : € — D is said to be separable if F splits, i.e. there is a natural
transformation
P : Homqp(F—, F—) — Home(—, —)

such that
PoF =IdHome(—,—)-
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Separable functors

Definition (N3stdsescu, Van den Bergh, Van Oystaeyen, 1989)

A functor F : € — D is said to be separable if F splits, i.e. there is a natural

transformation
P : Homqp(F—, F—) — Home(—, —)

such that
PoTF = Idgome(—,-)-

In other words,
1. forany f: X = Y in €, Px yoFx yv(f)=Px yv(F(f)="1;
2. if f,f' € € and g, g’ € D are such that

g Tx,x/(g)
F(X) ——= F(X’) X=X
F(f)J/ O iF(f’) = fl O if’
F(Y)4>F(Y’) Y ——=Y'
g, {yyyy/(gl)

o If F is separable, then it is faithful.
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Some properties

Let F: C— D and G : D — & be functors.
e If F and G are separable, then G o F is separable.
o If G o F is separable, then F is separable.

e Let f : X — Y be a morphism in C. If F is separable and F(f) has a left (or right
or two-sided) inverse g € D, then f has a left (or right or two-sided) inverse in €,

which is Px y(g)-
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Some properties

Let F: C— D and G : D — & be functors.
e If F and G are separable, then G o F is separable.
o If G o F is separable, then F is separable.

e Let f : X — Y be a morphism in C. If F is separable and F(f) has a left (or right
or two-sided) inverse g € D, then f has a left (or right or two-sided) inverse in €,

which is Px y(g)-

Px x(F(1d
F(X) F(1dx) F(X) Xx,x( ( x}%
F(f)i ¢) lF(Idx) = fl o lldx
F(Y) —— F(X) Y —= X
g Px,v(g)

= Maschke’s Theorem: A short exact sequence which is split after we apply the separable
functor F, is itself split.
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Why separable?

Let ¢ : R — S be a ring homomorphism, and consider

©*=(—)®rS
Mg 1o Ms.
P

Then,
e ©* is separable < ¢ splits as an R-bimodule map;

e . is separable < S/R is separable, i.e. the product map ms: S®g S — S has
an S-bimodule section o (i.e. mso = Idg).
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Why separable?

Let ¢ : R — S be a ring homomorphism, and consider

©*=(—)®rS
Mg 1o Ms.
P

Then,
e ©* is separable < ¢ splits as an R-bimodule map;

e . is separable < S/R is separable, i.e. the product map ms: S®g S — S has
an S-bimodule section o (i.e. mso = Idg).

e
Let R be a commutative ring. A is a separable
R-algebra if

n
He:ZX,-@Ry,' EAQRA
i=1

for some Xx;, y; € A such that > ; xjy; = 14 and
Vhe A ST hx ®ryi = > 11 Xi ®r yih.
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Why separable?

Let ¢ : R — S be a ring homomorphism, and consider

©*=(—)®rS
Mg 1o Ms.
P

Then,
e ©* is separable < ¢ splits as an R-bimodule map;

e . is separable < S/R is separable, i.e. the product map ms: S®g S — S has
an S-bimodule section o (i.e. mso = Idg).

e
Let R be a commutative ring. A is a separable
R-algebra if

e C/Ris separable: e = J(1®1—i® i)
n
® R/Q is not separable
36=fo®R}/i EARQRA /2 P
i=1 e M,(R) is a separable R-algebra:
e = Z?:l €1 Qr el where (e,-,j)(,-,j) =1r

for some Xx;, y; € A such that > ; xjy; = 14 and and (e j)(siy = Or for (h, k) % (ir])

Vhe A, Y1 hx Qryi =201 X ®rYih.
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Rafael's Theorem, 1990

F
Let C i D be an adjoint pair of functors with unit n and counit €. Then,
G

1. F is separable if and only if the unit 7 : Ide — GF splits, i.e. there exists a
natural transformation v : GF — Ide such that v on = Idiq,;

2. G is separable if and only if the counit ¢ : FG — Idp cosplits, i.e. there exists a
natural transformation v : Idp — FG such that eoy = Idq,,
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F
Let C i D be an adjoint pair of functors with unit n and counit €. Then,
G

1. F is separable if and only if the unit 7 : Ide — GF splits, i.e. there exists a

natural transformation v : GF — Ide such that v on = Idiq,;
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Rafael's Theorem, 1990

F
Let C i D be an adjoint pair of functors with unit n and counit €. Then,
G

1. F is separable if and only if the unit 7 : Ide — GF splits, i.e. there exists a
natural transformation v : GF — Ide such that v on = Idjq,;

2. G is separable if and only if the counit ¢ : FG — Idp cosplits, i.e. there exists a
natural transformation v : Idp — FG such that eoy = Idq,,
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Separable = “naturally faithful” —_—
? —~
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Naturally full functors

Definition (Ardizzoni, Caenepeel, Menini, Militaru, 2006)

A functor F : € — D is called naturally full if there exists a natural transformation
P : Homqp(F—, F—) — Home(—, —)

such that

Fo P =Idnomyp(F—,F-)

Ix,v o Px,v(f) = F(Px,y(f))=f
Pv,r(F(h)ofoF(k))=hoPx y(f)ok
Vi:F(X)—> F(Y)inDandVk:V — X, h: Y — TinC.
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Naturally full functors
Definition (Ardizzoni, Caenepeel, Menini, Militaru, 2006)
A functor F : € — D is called naturally full if there exists a natural transformation
P : Homqp(F—, F—) — Home(—, —)

such that
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Naturally full functors

Definition (Ardizzoni, Caenepeel, Menini, Militaru, 2006)
A functor F : € — D is called naturally full if there exists a natural transformation
P : Homqp(F—, F—) — Home(—, —)

such that
Fo P =Idnomyp(F—,F-)

Ix,v o Px,v(f) = F(Px,y(f))=f
Pv,r(F(h)ofoF(k))=hoPx y(f)ok
Vi:F(X)—> F(Y)inDandVk:V — X, h: Y — TinC.

o If F is naturally full, then it is full.
e If F and G are naturally full, then G o F is naturally full.
o If G o F is naturally full and G is faithful, then F is naturally full.

Remark

F is fully faithful < F is separable and naturally full
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Rafael type Theorem

F
Let € Z D be an adjoint pair of functors with unit n and counit €. Then,
G

1. F is naturally full if and only if the unit n : Ide — GF cosplits, i.e. there is
v : GF — Ide such that n¢ o ve = Idgpce, for all C € C;

2. G is naturally full if and only if the counit € : FG — Idp splits, i.e. there is
7 : Idp — FG such that vp o ep = Idggp, for all D € D.

Example
0" =(—)®rS
Mr 1 = Ms
P

® . is naturally full & it is full.
o ©* is naturally full < there exists E € gHom(S, R)g such that ¢ o E = Ids.
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Further investigations

Functors

Fatkivful
T
Separ«ble

«other functors?
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Let F:C— D and H : € — & be functors.
o Separable functors of Il type: F is H-separable, if

Home(—, —) = Homq (F—, F—)

Homg (H—, H-)

such that PoF = H.

o F is heavily-separable (2020) if it is separable and for every X,Y,Z € C,

Px,yXPy 7z
Homqp (FX, FY) x Homp (FY, FZ) —— Home(X, Y) x Home(Y, Z)

o¢ Ve
Homqp (FX, FZ) Home (X, Z)

Px,z

commutes, i.e. on elements Px 7(f o g) = Py z(f) o Px, v(g).
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