Billiards with refraction: an example from
Celestial Mechanics

Irene De Blasi
PhD in Pure and Applied Mathematics
XXXV Cycle
University of Turin - Politecnico of Turin
Supervisor: Prof. S. Terracini

International Day of Women and Girls in Science
February, 11 2021

1/15



Dynamical model

Let D C R? be a regular domain, 0 € D°, and consider the orbits with
zero energy subjected to the potential

Vi(z) =€+ h+ £ ifzeD,
V(Z): o w? 2 . =
VE(z) =€ — % |z|* ifz¢ D,

with €, h, i, w > 0, while on the boundary 9D the following junction rule
(Snell’s law-type) holds:

vV VEe(z)sina = +/Vi(z)sin

Ve

B
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Motivations - Black Hole in an elliptical Galaxy

Suppose to have an ellipsoidal galaxy with constant density and a Black
Hole at its center.

w? w? w?
P gl VGaI(P) — _7)(X2 _ 7,vy2 _ 7222 + CG

Veu(P) = TM/% + Cgy

Wy, wy,w; >0, Cg, Cpy € R.

BH'’s region of influence= D = {P € R3 | |Vgy(P)| > |Vea(P)|}
Ty invariant under the dynamics: if w, = w, and 0 < Cg < Cgy, setting
D = D Ny, we can use our 2-D model to study the motion of P on ,,.
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First return map

OD = supp(7) with v : R 5.7 — R? regular closed curve; if

(o, vo) € D x IR? are the initial conditions of an outward-pointing orbit,
there are & € R 5.7, aq € [—7/2,7/2] such that, if £(¢), A(¢) are the
tangent and inner normal unit vectors:

po = (&), vo = v/2VE(po)(sin agt(&o) + cos api(&o))

= the pair (£o, ap) completely determines the initial conditions on the
boundary 0D. We define the first return map
FiRjpnz X [-5,5] 2 Rppnz X [-5, 5

(507 ao) outer arc (57 &) inner arc (617 al)

refraction E-1 refraction I-E
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Variational approach
Define the generating fuction

S Rypz X Rpanz S(&0,&1) = Se(é0,€) + Si(€. 1)
Sevi(a, b) = devi(v(a),v(b)) =

_ min{ fol IA(t)[/ Ve (\(t))dt | A(t) piecewise differentiable }
st. A(0) = ~(a), A(L) = v(b)

and & such that, fixed &o, &1, 9¢(Se(&0,€) + Si(&, 1)) e = 0.

Conjugated actions: o = —0¢,S(&0,&1) = v Ve(7(&0)) sin o
h = 0¢, 5(80,61) = v/ VE(v(&1)) sinau

w? w? w? w?
]:ZR/zﬂ.Zx<—\/€—7,\/5—7)—>R/2ﬂzx(—\/6—?,\/ —7)

(€0, o) = (&1, )
When 5(&p,&1) is well defined, F is conservative.
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Circular case

If D is a disk of radius 1, F is a shift map
(0, 1o) = (&1, 1) = (o + 0(h), ko), where

£—21? 212 —p . .
arctan <—l\/m> + 2 arccos (—\/m> 27 if I >0
0(1)=40 if =0

£—2/? _ 27 —p :
arctan (/ 48_2(212+w2)> 23rccos< 4(£+h)l2+u2> + T if <0
Proposition

Thereis T C T = (—\/5 - %2, \/8 = %2> 1Z| < 10, such that for every
& € R/zﬂz, o € I\i
o F is well defined and conservative;

o F satisfies the twist condition

061
8_10(50’ lo) # 0.
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Orbits on the circle
Orbit: {(&k, 1)} = {F* (&0, lo) Yrez.

Rotation number: p(&o, o) = limg_ 00 % = 6(lp) (circular case).
o +27mp, o) = (o, bo)

If 0(ly) = 2772, p.q €L =>(E. 1)

Theorem

3C = C(€,w, h, ) > 0 such that for every p € (—C, C) except for a

= (60, o) is

(
(p, q) - periodic.

finite number of values EIIOjE S I\i’ s.t. for every & € R /272

. %gQ
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General case: homotetic fixed point
Suppose that v : R /5.7 — R? is a regular closed curve, supp(y) = 9D,
0 e D°.
Proposition

If € € Rp,z is such that 4(£) L v(€) = (£,0) is a fixed point for F,
corresponding to the homotetic solution of initial conditions

(Po, v0) = (7(5) M)
| G
The linear stability of (£,0) can be studied by computing the Jacobian

matrix of F.

Variational methods + Levi-Civita regularization + Implicit function

theorem
l
50 FrEo .
DF(&,0) = (ch,_zog:, 0; §_E((§a0))> ~» A1, \» eigenvalues
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Homotetic fixed points - Linear stability

Proposition

Let p(\) be the characteristic polynomial of DF(,0), and A its
discriminant.
Since det (DF(£,0)) = 1, then:
) A_> 0= )\1,)\2 E R,/\Q = 1/)\1,)\1 7& A = |>\1| > 1,|>\2| <1, then
(&,0) is an unstable saddle point;
(4] A_< 0= )\1,)\2 & (C\R,/\l = 5\2,)\1 ;é Ao = |)\1| = |)\2| =1 and
(&,0) is a stable center point;
e A =0 — degenerate case (e.g. circular domain).
The discriminant A depends on the physical parameters &, h, 1, w and on
7 and 3 trough [y(§ 9|, |7(€)| and k(€), i.e. the curvature of « in &: fixed

€ such that (£,0) is a homotetic fixed point,changing the values of the
physical parameters may modify its stability properties— bifurcations.

9/15



Elliptic case - Bifurcation for p

Suppose that 9D is an ellipse parametrized by v(§) = (acos&, bsin &),
a=1b=av/l-¢e? 0<e<1=(0,0)and (7/2,0) are fixed points

for F.
A —0
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Figure: £ =2.5,h=2,w = +/2,e = 0.1. Up: value of A for (0,0) and (7/2,0)
and p € [1,30]. Down: Poincaré sections for different values-of y,200 points:
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Elliptic case - Bifurcation for h

12 Bifurcation for h=109.091

— 0
90°
_—

20406080100 120 140 h

The stability behaviour of the equilibria suggests the presence of a

pitchfork bifurcation, with the arising of a new equilibrium point between
0 and 7/2.

h=109
5§

13 14 15

Figure: £ =25, 1= 2,w = /2, e = 0.1. Up: value of A for (0,0) and (7/2,0)
and h € [0,150]. Down: Poincaré sections for different values of h, 2000 points.
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Elliptic case - Search for new equilibria

k
If AL,

DFX(E,0) = A, = M, = the
bifurcation values are the same for
all the iterates.

The Poincaré sections show the
arising of an orbit of minimal period
2 for h > bifurcation value.

Idea: search for 2-periodic brake
orbits via the shooting method.
We search for 2-periodic orbits
which are homotetic in their outer

K‘/ arcs: consider the free fall map
00

® : [0,27] — [0, 27],

are the eigenvalues of
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Elliptic case - Search of new equilibria

If 6 = ®(#) =0, the outer branches are both homotetic, and the whole
orbit is 2—periodic.

h=107 h=109.091 h=111
5§ 17 18 14 5 3 17 18 13 14 15§ 17
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Up: plot of § = ®(f) in a neighborhood of 7/2 for different values of A.
Down: first derivative of §/2 = ®(7/2) as a function of h.
Conclusion: the 2-periodic orbits which appear when h >bifurcation
value are brake.
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Further research

o Elliptic case: systematic study of the orbits near to the homotetics
for every value of the eccentricity;

o General case: perturbative methods on the circular case, with a
small deformation of the boundary 9D. In particular:

- KAM theory: existence of quasi-periodic invariant tori with
diophantine rotation number for the perturbed system;

- Mather theory (Poincaré Birkhoff theorem): existence of invariant

orbits with prescribed rotation number, under the hypothesis of twist
condition.
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