Special geometric structures in six and seven dimensions

Francesca Salvatore

11 February 2021

Università degli Studi di Torino Dipartimento di Matematica G. Peano

Motivations - String theory

• Phisical motivations: Unifying phisical theory

String theory General relativity Quantum mechanics

Heterotic string theory: 10 dimensions

Ansatz [Hull-Strominger] $T^{9,1} = \mathbb{R}^{3,1} \times M^6$

"If we were to take a detailed look at our four-dimensional spacetime, as depicted by the line in this figure, we'd see it's actually harboring six extra dimensions, curled up in an intricate though minuscule geometric space known as a Calabi-Yau manifold. [...] No matter where you slice this line, you will find a hidden Calabi-Yau, and all the Calabi-Yau manifolds exposed in this fashion would be identical." -Shing Tung Yau

Goal: understanding possibile concrete manifestations of this model (constraints on M^6) \rightsquigarrow Strominger system Special solutions: Parallel SU(3)-structures $5 \ \text{string theories:} \begin{cases} Type \ IIA \\ Type \ IIB \\ Type \ I \\ Heterotic \ E_8 \times E_8 \\ Heterotic \ SO(32) \end{cases} (10 \ \text{dimensions} \rightsquigarrow 6 \ \text{extra})$

 \implies M-theory [Witten, 1995]: all theories are tied together through a common framework (11 dimensions \rightsquigarrow 7 extra) \rightsquigarrow special solutions: G₂ manifolds

"So one might think that much of what we've talked about so far [...] could have been suddenly rendered obsolete by Witten's eureka moment. Fortunately, [...] that is not the case. [...] First, eleven-dimensional spacetime is treated as the product of ten-dimensional spacetime and a one-dimensional circle. We compactify the circle, [...] then take those ten dimensions and compactify on a Calabi-Yau manifold, as usual, to get down to the four dimensions of our world." -Shing Tung Yau

"So even in M-theory, Calabi-Yau manifolds are still in the center of things." -Petr Horava

Motivations - The Holonomy group of a Riemannian manifold

M n-fold, $p, q \in M, v \in T_p M$ $\gamma : [0, 1] \to M$ curve, $\gamma(0) = p, \gamma(1) = q$ Question: Is there a way to move v parallel along γ ?

Simple case $M = \mathbb{R}^n$

 $\stackrel{\text{$\sim$}}{\to} \text{ choose a vector field } v(t) \text{ along } \gamma(t) \text{ starting from } v \text{ such that} \\ v'(t_0) \coloneqq \lim_{t \to t_0} \frac{v(t) - v(t_0)}{t - t_0} = 0, \quad \forall t_0 \in [0, 1].$

More generally Problem: $v(t) \in T_{\gamma(t)}M \neq T_pM$

We need a connection ∇ , X vector field along γ ; X is parallel with respect to ∇ if $\nabla_{\frac{d\gamma}{dt}} X = 0$, $\frac{d}{dt}$ vector field on [0, 1]. Fact: $v \in T_p M \to \exists ! X$ parallel vector field along γ , $X_p = v$

Parallel transport

 $P_\gamma:T_pM\to T_qM,\,v\mapsto P_\gamma(v):=$ endpoint of the unique parallel vector field along γ starting from v

Holonomy group

 $\operatorname{Hol}_p(\nabla) := \{ P_\gamma \, | \, \gamma \text{ piecewise } C^\infty, \, \gamma(0) = \gamma(1) = p \}$

Fact: When M is connected, $\operatorname{Hol}_p(\nabla)$ does not depend on the base point and we can refer to it as $\operatorname{Hol}(\nabla) \subseteq \operatorname{GL}(\mathbb{R}, n)$, up to conjugation

(M,g) Riemannian manifold, $\nabla^{\text{LC}} \coloneqq \nabla$ Levi-Civita connection

 \implies Hol $(\nabla) \subseteq$ SO(n) when M is simply connected

Theorem [Berger 1955]

Let (M, g) be a complete, simply connected, irreducible, non-symmetric Riemannian manifold of dimension n. Then $Hol(\nabla)$ is one of the following groups:

- SO(n);
- U(m), with $n = 2m \ge 4$ (Kähler);
- SU(m), with $n = 2m \ge 4$ (Calabi-Yau, $\operatorname{Ric}(g) = 0$);
- $\operatorname{Sp}(m)\operatorname{Sp}(1)$, with $n = 4m \ge 8$ (hyperkähler, $\operatorname{Ric}(g) = 0$);
- Sp(m), with $n = 4m \ge 8$ (quaternionic Kähler, $\operatorname{Ric}(g) = c g, c \neq 0$);
- G₂, with n = 7 (exceptional holonomy G₂, $\operatorname{Ric}(g) = 0$);
- Spin(7), with n = 8 (exceptional holonomy Spin(7), $\operatorname{Ric}(g) = 0$).

Definitions - SU(3)-structures

$$\begin{aligned} (\mathbb{R}^6)^* &= \left\langle e^1, \dots, e^6 \right\rangle \\ \omega_0 &= e^{12} + e^{34} + e^{56} \\ \rho_0 &= e^{135} - e^{146} - e^{236} - e^{245} \end{aligned}$$

The Lie group SU(3)

$$\mathrm{SU}(3) \coloneqq \{ f \in \mathrm{GL}(6, \mathbb{R}) \, | \, f^* \omega_0 = \omega_0, f^* \rho_0 = \rho_0 \} \subset \mathrm{SO}(6)$$

SU(3) is a compact, connected, simply connected, simple Lie group with $\dim_{\mathbb{R}}SU(3) = 8$ SU(3)-structures

M 6-fold, $(\omega,\rho)\in \Lambda^2(M)\times \Lambda^3(M)$ is called a SU(3)-structure if

$$(T_p M, \omega_p, \rho_p) \cong (\mathbb{R}^6, \omega_0, \rho_0)$$

for any $p \in M$.

$$(\omega, \rho) \iff (g, J, \operatorname{Vol}_g), \quad \text{where} \begin{cases} g \text{ Riemannian metric} \\ J \text{ almost complex structure} & \text{on M} \\ \operatorname{Vol}_g \text{ orientation} \end{cases}$$

Moreover, $g, \operatorname{Vol}_g \rightsquigarrow \nabla^{\operatorname{LC}}, *_g$ Hodge operator

$$\begin{aligned} & (\mathbb{R}^7)^* = \left\langle e^1, \dots, e^7 \right\rangle \\ & \varphi_0 = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245} \end{aligned}$$

The Lie group G_2 $G_2 := \{ f \in GL(7, \mathbb{R}) \mid f^* \varphi_0 = \varphi_0 \} \subset SO(7)$

 G_2 is a compact, connected, simply connected, simple Lie group with ${\rm dim}_{\mathbb R}G_2=14$

 G_2 -structures

N 7-fold, $\varphi \in \Lambda^3(M)$ is called a G₂-structure if

$$(T_p N, \varphi_p) \cong (\mathbb{R}^7, \varphi_0)$$

for any $p \in N$.

 φ induces a Riemannian metric g_{φ} and an orientation $\operatorname{Vol}_{g_{\varphi}}$ on N:

$$g_{\varphi}(X,Y)\operatorname{Vol}_{g_{\varphi}} = \frac{1}{6}\iota_X \varphi \wedge \iota_Y \varphi \wedge \varphi.$$

Moreover, $g_{\varphi}, \operatorname{Vol}_{g_{\varphi}} \rightsquigarrow \nabla^{\operatorname{LC}}, *_{g_{\varphi}}$ Hodge operator

$$\begin{aligned} \mathbb{R}^7 &= \mathbb{R}^6 \times \mathbb{R} \\ \omega_0 &= e^{12} + e^{34} + e^{56} \\ \rho_0 &= e^{135} - e^{146} - e^{236} - e^{245} \end{aligned}$$

$$\implies \varphi_0 = \omega_0 \wedge e^7 + \rho_0$$

= $e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$

A G₂-structure φ on a 7-fold induces an SU(3)-structure (ω, ρ) on every oriented hypersurface and, vice versa, an SU(3)-structure (ω, ρ) on a 6-manifold M induces a G₂-structure φ on the cartesian product $M \times L$, $L = \mathbb{R}, S^1$. M 6-fold

Let (ω, ρ) be an SU(3)-structure on M and let d be the De Rham differential of M

Closed SU(3)-structures

 $d\rho = 0$

Coclosed SU(3)-structures

 $d *_g \rho = 0$

Symplectic SU(3)-structures $d\omega = 0$

Torsion free SU(3)-structures

 $\begin{cases} d\rho = 0 \\ d\omega = 0 \\ d \ast_g \rho = 0 \end{cases} \iff \operatorname{Hol}(\nabla^{\operatorname{LC}}) \subseteq \operatorname{SU}(3) \implies \operatorname{Ric}(g) = 0 \\ \end{cases}$

N 7-fold

Let φ be a G₂-structure on N and denote by d the De Rham differential of N

Closed G_2 -structure $d\varphi = 0$

Coclosed G₂-structure $d *_{\varphi} \varphi = 0$

Torsion free G₂-structure

 $\begin{cases} d\varphi = 0 \\ d *_{\varphi} \varphi = 0 \end{cases} \iff \operatorname{Hol}(\nabla^{\operatorname{LC}}) \subseteq \operatorname{G}_2 \implies \operatorname{Ric}(g_{\varphi}) = 0 \end{cases}$

Closed G_2 -structures are a potential tool to obtain new examples of torsion free G_2 -structures on compact manifolds

- [Joyce 1996]: On a compact 7-fold a closed G₂-structure with small torsion can be deformed into a torsion free one;
- [Bryant 2006]: Laplacian flow for closed G_2 -structures.

 \rightarrow **CLASSIFICATION PROBLEMs:** a central problem in differential geometry!

- Closed G₂-structures on special classes of 7-folds (Lie groups, Homogeneous spaces)
- Special solutions of the Laplacian flow (self-similar solutions)
- \rightsquigarrow Some other problems:
 - Special classes of non-integrable SU(3)-structures on 6-folds (cohomogeneity one manifolds)
 - $\bullet\,$ Properties of the Hitchin flow for half-flat SU(3)-structures

Further readings

- I. Alonso, F. Salvatore, On the existence of balanced metrics on 6-manifolds of cohomogeneity one, arXiv:2003.03826,
- M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83, 279–330 (1955),
- R. L. Bryant, Some remarks on G2-structures, Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT), Gökova, 75–109 (2006),
- R. Bryant, F. Xu, Laplacian flow for closed G₂-structures: short time behavior, arXiv:1101.2004,
- S. Chiossi, S. Salamon, The intrinsic torsion of SU(3) and G₂ structures, in Differential geometry, Valencia, 2001, World Sci. Publ., River Edge, 115–133 (2002),
- A. Fino, F. Salvatore, Closed SL(3, C)-structures on nilmanifolds, arXiv:2009.12893,
- M. Garcia-Fernandez, Lectures on the Strominger system, *Trav. Math.* 24, 7–61 (2016),
- D. D. Joyce, *Riemannian holonomy groups and calibrated geometry*, Oxford Graduate Texts in Mathematics, vol. 12, Oxford University Press (2007),
- S.-T. Yau, S. Nadis, The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions, Basic Books (2010).