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The industrial setting

We have an incompressible fluid and we want to compute the pressure
drops in channels in a very efficient way.

Our task is to find a model

@ with a very low computational
cost.

@ that represents all the fluid and
the geometry characteristics.

@ at least of third order of
accuracy.




Mathematical model
The mass and the momentum conservation equations are
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Assumptions:
@ incompressible fluid p = cost so (1) begins V-7 =0
@ "no-slip” condition so & = 0 on solid boundary
@ inlet : Dirichlet condition for i
outlet: Neumann condition for p.

A fluid can be
@ Newtonian o= uy

_Bingham
Plastic

o Non-Newtonian o = (%)%
where 7 is the tensor strain and it is
defined as ¥y = Vi + (Vi)™ -
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NS analytic solution, Poiseuille

The incompressible Navier-Stokes
equations:
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NS analytic solution, Poiseuille

The incompressible Navier-Stokes
equations:
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Hypothesis:

@ the .radlus R is .constant ov—=0
@ stationary solution o u(x) = const

o fully developed flow

= 0y (n Oyu) =0xp elliptic eq. on the transverse direction

\
we obtain a velocity profile, that it is
parabolic for a newtonian fluid

) = 52 (R = y?)




If R is non constant

o v,w#0
= Oyp#0:.p#0
@ u(x) # constant
o u(y) # parabolic
@ the pressure drop isn't

constant
= Oxp # constant
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If R is non constant

o v,w#0
= Oyp#0:.p#0 -
@ u(x) # constant y ]
o u(y) # parabolic % X a
@ the pressure drop isn't ‘ ‘

constant ]
= Oxp # constant

We could :
@ use a 3D solver
@ discretize in x and in the transversal directions

@ approximate the solution with [P, in each cell

Problem: it requires a high computational cost.



Almost 1D approximation

Idea: we want to solve a 1D equation in the x direction, but we don’t
know how to analytically calculate the velocity profile, so we decide to
compute it numerically.

We assume:
@ slowly varying diameter of pipe
3] 0
ov,w=20 = 9P _P_ 0
0y 0,

e u=u(x,y,z) and u =0 on the boundary (no-slip)

@ velocity: Dirichlet condition in inflow
pressure: p — 0 = Pyt in outflow

Main point: we discretize only in x

direction and we use a high polynomial
degree in y and z directions to Ax
determine the profile (it is no longer

parabolic)



Plpe with rectangular Section, for a non newtonian fluid

OpenFoam comparison
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Plpe with rectangular Section, for a non newtonian fluid

OpenFoam comparison

Geometry:

H;, =2.5cm L=10cm
BC inlet:

@ our program
u = parabolic
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Plpe with rectangular Section, for a non newtonian fluid
OpenFoam comparison
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Plpe with rectangular Section, for a non newtonian fluid

OpenFoam comparison

Geometry:
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In a simulation with 80 cells, the
Comparing the average piston CPU time for
pressu.re, obtained wit'h OpenFoam, o OpenFoam is 59
there is a value 3% higher than that
obtained with our model.

@ our program is 29s
with a reduction of 50 %.



Curved plpe with variable radius, for a non newtonian fluid

OpenFoam comparison

Geometry: H;, =25cm, Hoy =1.25cm, L=10cm, 6=7/3
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—avg Presure et
1200

1200

Pressure (Pa)
g

The average pressure, estimated by =1
our program, is 7% lower than the R e e
average value on the inlet face for o

OpenFoam. Instead the axial ‘
velocity is 4 % higher.

With 160 cells, the CPU time for
@ OpenFoam is 8.35 min

velocity (m/s)
s o

@ our program is 1.49 min 204

with a reduction of about 82 % T




Example
We simulate the behavior of a fluid being pushed into a channel by a
moving wall. In the first 0.05 seconds the velocity is increased and then it
is kept constant.
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Pipes comparison

Comparison between the pressure drops in two channels which differ only
in the horizontal part.

The a priori simulation of the behavior of fluids is particularly useful in
the design phase because it allows to create components that respect
particular physical constraints.




