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Nonlinear Schrödinger dynamics on metric graphs..Why??

I Graphs provide one-dimensional approximations for constrained

dynamics in which transverse dimensions are negligible

compared to longitudinal ones.

I Bose-Einstein condensates (BEC).



Bose-Einstein condensates.. The �fth state of matter in a nutshell.

In the early '20s, Satyendra Nath

Bose and Albert Einstein pre-

dicted that..



But only 70 years later,

in 1995, Wieman,

Cornell and Ketterle

proved the existence of

BEC experimentally!

The Nobel Prize in Physics 2001.



..and so what? Why �variational�?

At the absolute zero temperature (0
◦
Kelvin, −273.15◦ Celsius,

−459.67◦ Farenheit), all the particles of the ultracold gas of

identical and indistinguishable bosons, share the same wave

function ϕ that solves the variational problem

min
u∈H1(Ω),∫
|u|2=N

EGP(u).

Ω is the trap in which the particles are con�ned, N is the number

of the particles of the system and �nally EGP is the Gross-Pitaevskii

functional de�ned as

EGP(u) = ||∇u||2L2(Ω) + 8πα||u||4L4(Ω),

where α is the scattering length of the two-body interaction

between the particles in the condensate.



Our problem:

De�ned the energy functional as

E (u,G) :=
1

2
||u′||2L2(G) −

1

p
||u||pLp(G), 2 < p ≤ 6

on a metric graph G, is it possible to �nd a global minimizer (i.e. a

ground state) among all the continuous functions that share the

same mass µ, i.e.
||u||2L2(G) = µ?



Metric graphs: topology and metric.

I A metric graph G is a connected structure made of either

�nite or in�nite edges, meeting at vertices. Each bounded

edge e ∈ E can be identi�ed with an interval [0, `e ] and each

unbounded one with an hal�ine [0,+∞).

I The metric structure is given by the shortest-path distance.

G = (V, E)

u

Hence, u ∈ Lp(G) is a Lp-function on every edge, while u ∈ H1(G)
is a H1-function on every edge and continuous in all vertices.
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About the functional, the constraint and the nonlinearity.

E (u,G) =
1

2
||u′||2L2(G) −

1

p
||u||pLp(G), 2 < p ≤ 6.

I E is not lower bounded! Fixed u ∈ H1(G), for p > 2 it follows

E (λu,G) =
λ2

2
||u′||2L2(G) −

λp

p
||u||pLp(G) → −∞, forλ→ +∞.

I Fix u ∈ H1(G) with mass µ and consider uλ(x) =
√
λu(λx).

E (uλ,G) =
λ2

2
||u′||2L2(G) −

λ
p
2
−1

p
||u||pLp(G).

I p ∈ (2, 6) (subcritical case): E turns out to be lower bounded.
I p > 6 (supercritical case): E (uλ,G)→ −∞, as λ→ +∞.
I p = 6 (critical case): is E lower bounded? It depends on µ.



In conclusion, where does �Schrödinger� come from?

If u is a ground state for the constrained energy functional, it

follows that:

∇E (u,G) =
ω

2
∇(µ− ||u||2L2(G)).

In particular, on G it holds the stationary equation

Hφ− |φ|p−2φ+ ωφ = 0,

associated to the time-dependent nonlinear Schrödinger

equation

i∂tψ = Hψ − |ψ|p−2ψ,

where H is a self-adjoint extension of the Laplace operator.



Thanks for your attention!


