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Motivations - String theory

• Phisical motivations: Unifying phisical theory

String theory

{
General relativity

Quantum mechanics

Heterotic string theory: 10 dimensions

Ansatz [Hull-Strominger] T 9,1 = R3,1 ×M6

“If we were to take a detailed look at our

four-dimensional spacetime, as depicted by

the line in this figure, we’d see it’s actually

harboring six extra dimensions, curled up in

an intricate though minuscule geometric

space known as a Calabi-Yau manifold. [...]

No matter where you slice this line, you

will find a hidden Calabi-Yau, and all the

Calabi-Yau manifolds exposed in this

fashion would be identical.”

–Shing Tung Yau

Goal: understanding possibile concrete manifestations of this model (constraints

on M6)  Strominger system

Special solutions: Parallel SU(3)-structures

1



Motivations - String theory

5 string theories:



Type IIA

Type IIB

Type I

Heterotic E8 × E8

Heterotic SO(32)

(10 dimensions 6 extra)

=⇒ M-theory [Witten, 1995]: all theories are tied together through a common

framework (11 dimensions  7 extra)  special solutions: G2 manifolds
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Motivations - String theory

“So one might think that much of what we’ve talked about so far [...] could have

been suddenly rendered obsolete by Witten’s eureka moment. Fortunately, [...]

that is not the case. [...] First, eleven-dimensional spacetime is treated as the

product of ten-dimensional spacetime and a one-dimensional circle. We

compactify the circle, [...] then take those ten dimensions and compactify on a

Calabi-Yau manifold, as usual, to get down to the four dimensions of our world.”

–Shing Tung Yau

“So even in M-theory, Calabi-Yau manifolds are still in the center of things.”

–Petr Horava
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Motivations - The Holonomy group of a Riemannian manifold

M n-fold, p, q ∈M , v ∈ TpM
γ : [0, 1] !M curve, γ(0) = p, γ(1) = q

Question: Is there a way to move v parallel along γ?

Simple case M = Rn

 choose a vector field v(t) along γ(t) starting from v such that

v′(t0) := limt!t0

v(t)− v(t0)

t− t0
= 0, ∀t0 ∈ [0, 1].

More generally Problem: v(t) ∈ Tγ(t)M 6= TpM

We need a connection ∇, X vector field along γ;

X is parallel with respect to ∇ if ∇ dγ
dt
X = 0, d

dt
vector field on [0, 1].

Fact: v ∈ TpM ! ∃ !X parallel vector field along γ, Xp = v

Parallel transport

Pγ : TpM ! TqM , v 7! Pγ(v) := endpoint of the unique parallel vector field

along γ starting from v
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Motivations - The Holonomy group of a Riemannian manifold

Holonomy group

Holp(∇) := {Pγ | γ piecewise C∞, γ(0) = γ(1) = p}

Fact: When M is connected, Holp(∇) does not depend on the base point and we

can refer to it as Hol(∇) ⊆ GL(R, n), up to conjugation

(M, g) Riemannian manifold, ∇LC := ∇ Levi-Civita connection

=⇒ Hol(∇) ⊆ SO(n) when M is simply connected

Theorem [Berger 1955]

Let (M, g) be a complete, simply connected, irreducible, non-symmetric

Riemannian manifold of dimension n. Then Hol(∇) is one of the following

groups:

• SO(n);

• U(m), with n = 2m > 4 (Kähler);

• SU(m), with n = 2m > 4 (Calabi-Yau, Ric(g) = 0);

• Sp(m)Sp(1), with n = 4m > 8 (hyperkähler, Ric(g) = 0);

• Sp(m), with n = 4m > 8 (quaternionic Kähler, Ric(g) = c g, c 6= 0);

• G2, with n = 7 (exceptional holonomy G2, Ric(g) = 0);

• Spin(7), with n = 8 (exceptional holonomy Spin(7), Ric(g) = 0).
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Definitions - SU(3)-structures

(R6)∗ =
〈
e1, . . . , e6

〉
ω0 = e12 + e34 + e56

ρ0 = e135 − e146 − e236 − e245

The Lie group SU(3)

SU(3) := {f ∈ GL(6,R) | f∗ω0 = ω0, f∗ρ0 = ρ0} ⊂ SO(6)

SU(3) is a compact, connected, simply connected, simple Lie group with

dimRSU(3) = 8

SU(3)-structures

M 6-fold, (ω, ρ) ∈ Λ2(M)× Λ3(M) is called a SU(3)-structure if

(TpM,ωp, ρp) ∼= (R6, ω0, ρ0)

for any p ∈M .

(ω, ρ)⇐⇒ (g, J,Volg), where


g Riemannian metric

J almost complex structure

Volg orientation

on M

Moreover, g,Volg  ∇LC, ∗g Hodge operator
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Definitions - G2-structures

(R7)∗ =
〈
e1, . . . , e7

〉
ϕ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245

The Lie group G2

G2 := {f ∈ GL(7,R) | f∗ϕ0 = ϕ0} ⊂ SO(7)

G2 is a compact, connected, simply connected, simple Lie group with

dimRG2 = 14

G2-structures

N 7-fold, ϕ ∈ Λ3(M) is called a G2-structure if

(TpN,ϕp) ∼= (R7, ϕ0)

for any p ∈ N .

ϕ induces a Riemannian metric gϕ and an orientation Volgϕ on N :

gϕ(X,Y )Volgϕ =
1

6
ιXϕ ∧ ιY ϕ ∧ ϕ.

Moreover, gϕ,Volgϕ  ∇LC, ∗gϕ Hodge operator
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Link between SU(3) and G2-structures

R7 = R6 × R
ω0 = e12 + e34 + e56

ρ0 = e135 − e146 − e236 − e245

=⇒ ϕ0 = ω0 ∧ e7 + ρ0

= e127 + e347 + e567 + e135 − e146 − e236 − e245

A G2-structure ϕ on a 7-fold induces an SU(3)-structure (ω, ρ) on every oriented

hypersurface and, vice versa, an SU(3)-structure (ω, ρ) on a 6-manifold M induces

a G2-structure ϕ on the cartesian product M × L, L = R, S1.
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Special SU(3)-structures

M 6-fold

Let (ω, ρ) be an SU(3)-structure on M and let d be the De Rham differential of M

Closed SU(3)-structures

dρ = 0

Coclosed SU(3)-structures

d ∗g ρ = 0

Symplectic SU(3)-structures

dω = 0

Torsion free SU(3)-structures
dρ = 0

dω = 0

d ∗g ρ = 0

⇐⇒ Hol(∇LC) ⊆ SU(3) =⇒ Ric(g) = 0
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Special G2-structures

N 7-fold

Let ϕ be a G2-structure on N and denote by d the De Rham differential of N

Closed G2-structure

dϕ = 0

Coclosed G2-structure

d ∗ϕ ϕ = 0

Torsion free G2-structure{
dϕ = 0

d ∗ϕ ϕ = 0
⇐⇒ Hol(∇LC) ⊆ G2 =⇒ Ric(gϕ) = 0
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Closed G2-structures

Closed G2-structures are a potential tool to obtain new examples of torsion free

G2-structures on compact manifolds

• [Joyce 1996]: On a compact 7-fold a closed G2-structure with small torsion

can be deformed into a torsion free one;

• [Bryant 2006]: Laplacian flow for closed G2-structures.

 CLASSIFICATION PROBLEMs: a central problem in differential

geometry!

• Closed G2-structures on special classes of 7-folds (Lie groups, Homogeneous

spaces)

• Special solutions of the Laplacian flow (self-similar solutions)

 Some other problems:

• Special classes of non-integrable SU(3)-structures on 6-folds (cohomogeneity

one manifolds)

• Properties of the Hitchin flow for half-flat SU(3)-structures
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