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WHAT: Integrated mathematical oncology

Oncology
Prevention,
diagnosis,

and treatment
of cancer

System biology
Understanding complex

systems by putting
pieces together

Biomathematics
Describing biological

processes and
their relations in

mathematical terms

Mathematical modeling
Cellular dynamics

Interaction with the
environment

Epigenetic
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WHAT: Mathematical modeling
Biological information

First model

Refined model

Prediction

Everything should be made as simple as possible.
But not simpler.
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WHAT: Mathematical modeling

Choice of:
space and/or time
scale(s)
approach (continuous,
discrete, hybrid)
mathematical
formulation

Biological information

First model

Refined model

Prediction
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WHAT: Mathematical modeling

Aims:
- adherence:

quality of data fit
coherence with
scientific knowledge

- simplicity:
theoretical
predictability
numerical solvability
lower computational
cost

Biological information

First model

Refined model

Prediction

Everything should be made as simple as possible.
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WHAT: Mathematical modeling

IN SILICO EXPERIMENTS

WHERE: on the
machine, outside the
patient body
WHEN: before
processes happen

Biological information

First model

Refined model

Prediction

Everything should be made as simple as possible.
But not simpler.
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HOW: Our Choices
Continuous approach
Meso/macro scale: cell dynamics, population point of view
Interactions: oxygen (respiration, survival), lactate (survival)
3d space: phenotypic space and geometric space

G. Fiandaca, M. Delitala, T. Lorenzi, A mathematical study of the influence of hypoxia and acidity
on the evolutionary dynamics of cancer cells in vascularised tumours
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HOW: Our Model (1 spacial, 2 phenotypic)

∂n
∂t

= βn
∂2n
∂x2 + θ

(
∂2n
∂y1

2 +
∂2n
∂y2

2

)
+ R(O,L, ρ,y) n

∂O
∂t

= βO
∂2O
∂x2 − λO O − ζO pO(O) ρ

∂L
∂t

= βL
∂2L
∂x2 − λL L + ζL pg(O) ρ

Functions

n(t , x , y1, y2) = cancer cell
density
O(t , x) = oxygen density
L(t , x) = lactate density
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Consumption

pO(O) = γO O
αO + O φO(O)

Spacial Distribution

ρ(t , x) =
∫ 1

0

∫ 1
0 n(t , x , y1, y2)dy1dy2
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Production

pG(O) = γG G
αG + G (1 − φO(O))

Spacial Distribution

ρ(t , x) =
∫ 1

0

∫ 1
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∂n
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= βn
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∂x2 + θ

(
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∂y1

2 +
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R(O,L, ρ,y) = pO(O)− S(O,L,y)− D(ρ)

Fitness
Cancer cells density

Proliferation
Selection
Death
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HOW: Our Model (1 spacial, 2 phenotypic)

∂n
∂t

= βn
∂2n
∂x2 + θ

(
∂2n
∂y1

2 +
∂2n
∂y2

2

)
+ R(O,L, ρ,y) n

R(O,L, ρ,y) = pO(O)− S(O,L,y)− D(ρ)

Fitness
Cancer cells density

Proliferation
Selection
Death

Death
Space-competition-induced death
D(ρ) = κρ
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HOW: Our Model (1 spacial, 2 phenotypic)

∂n
∂t

= βn
∂2n
∂x2 + θ

(
∂2n
∂y1

2 +
∂2n
∂y2

2

)
+ R(O,L, ρ,y) n

R(O,L, ρ,y) = pO(O)− S(O,L,y)− D(ρ)

Fitness
Cancer cells density

Proliferation
Selection
Death

Selection
Oxygen-driven:
SL(L, y1) = ηL

(
y1 − φL(L)

)2

Lactate-driven:
SO(O, y2) = ηO

(
y2 − φO(O)

)2
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HOW: Therapies (next step)

Chemotherapy
Radiotherapy
Surgery

The structure of the models allows to keep
into account:

geometry of the therapy
effect on therapy efficacy of the
resistance to hypoxia/acidosis
effect of therapy on remaining cells (if
any)

H. Namazi et al., Scientific Reports volume 5 (2015)
A. Nagai et al., Journal of Radiation Research (2017)
https://orchid-cancer.org.uk/
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WHY: Classifying Tumors
PARTIAL AIM: classifying cancers in macro areas (eco-evo index)

D1
T1 T2

R1
H1 R2

R1
H2 R2

D2
T1 T2

R1
H1 R2

R1
H2 R2

C. Maley et al., Classifying the evolutionary and ecological features of neoplasms, Nature (2017)
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WHY: Personalized medicine
FINAL AIM: individual protocols

Predictive model

Insertion of patient data

Simulation of tumor outcome

Individuation of the macro area
(first protocol selection)

Simulation of different proto-
cols on patient specific tumor

Choice of the best therapy
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WHO: Synergy and Heterogeneity

Mathematical
models

for medicine

Mathematics

Biology

Medicine

Physics

Chemistry

Mathematics

Analysis

Numerical
Analysis

AI

Physical
Mathematics

Giulia Chiari Mathematical models for oncology Women and Girls in Science 11 / 11



WHAT HOW WHY WHO

Thank you for your attention
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