

### International Day of Women and Girls in Science Turin, 11 February 2021

Mathematical models for oncology: a synergy of sciences towards personalised medicine

### Giulia Chiari

PhD in Pure and Applied Mathematics XXXVI cycle (PoliTO - UniTO) Models and Methods in Mathematical Physics

DISMA Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange"

## Summary

### 1 WHAT

- Integrated mathematical oncology
- Mathematical modeling

### 2 HOW

- Our choices
- Our model
- Our results
- Therapies

### 3 WHY

- Classifying tumors
- Personalized medicine

### 4 WHO











- space and/or time scale(s)
- approach (continuous, discrete, hybrid)
- mathematical formulation





Everything should be made as simple as possible. But not simpler.

Giulia Chiari

Mathematical models for oncology

| WHAT | HOW |  |
|------|-----|--|
| 00   |     |  |

### Aims: - adherence:

- quality of data fit
- coherence with scientific knowledge
- simplicity:
  - theoretical predictability
  - numerical solvability
  - lower computational cost





Everything should be made as simple as possible. But not simpler.







Everything should be made as simple as possible. But not simpler.

Giulia Chiari

Mathematical models for oncology

|    | HOW  |    | WHO |
|----|------|----|-----|
| 00 | 0000 | 00 | 0   |

- Continuous approach
- Meso/macro scale: cell dynamics, population point of view
- Interactions: oxygen (respiration, survival), lactate (survival)
- 3d space: phenotypic space and geometric space

G. Fiandaca, M. Delitala, T. Lorenzi, A mathematical study of the influence of hypoxia and acidity on the evolutionary dynamics of cancer cells in vascularised tumours

|    | HOW  |    |   |
|----|------|----|---|
| 00 | 0000 | 00 | 0 |

- Continuous approach
- Meso/macro scale: cell dynamics, population point of view
- Interactions: oxygen (respiration, survival), lactate (survival)
- 3d space: phenotypic space and geometric space

### Oxygen density > OM Aerobic Respiration

### Oxygen density < Om Anaerobic Respiration



VS

|               |    | ном  |    |   |
|---------------|----|------|----|---|
| 00 00 00 00 0 | 00 | 0000 | 00 | 0 |

- Continuous approach
- Meso/macro scale: cell dynamics, population point of view
- Interactions: oxygen (respiration, survival), lactate (survival)
- 3d space: phenotypic space and geometric space



| ном  |  |
|------|--|
| 0000 |  |

- Continuous approach
- Meso/macro scale: cell dynamics, population point of view
- Interactions: oxygen (respiration, survival), lactate (survival)
- 3d space: phenotypic space and geometric space



| HOW  |   |
|------|---|
| 0000 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_0 \frac{\partial^2 O}{\partial x^2} - \lambda_0 O - \zeta_0 p_0(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

#### **Functions**

- n(t, x, y<sub>1</sub>, y<sub>2</sub>) = cancer cell density
- O(t, x) =oxygen density
- L(t, x) = lactate density

|    | HOW  |    |   |
|----|------|----|---|
| 00 | 0000 | 00 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_0 \frac{\partial^2 O}{\partial x^2} - \lambda_0 O - \zeta_0 p_0(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

### Elements

Oxygen/Lactate density

- Diffusion
- Decay
- Consumption/production by cancer cells

|    | HOW  |    |   |
|----|------|----|---|
| 00 | 0000 | 00 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$

$$\frac{\partial O}{\partial t} = \beta_0 \frac{\partial^2 O}{\partial x^2} - \lambda_0 O - \zeta_0 p_0(O) \rho$$

$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

### Elements

Oxygen/Lactate density

- Diffusion
- Decay
- Consumption/production by cancer cells

|    | HOW  |    |   |
|----|------|----|---|
| 00 | 0000 | 00 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_0 \frac{\partial^2 O}{\partial x^2} - \lambda_0 O - \zeta_0 p_0(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

### Elements

Oxygen/Lactate density

- Diffusion
- Decay
- Consumption/production by cancer cells

|    | HOW  |    |   |
|----|------|----|---|
| 00 | 0000 | 00 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_0 \frac{\partial^2 O}{\partial x^2} - \lambda_0 O - \zeta_0 p_0(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

Consumption

$$p_O(O) = \frac{\gamma_O O}{\alpha_O + O} \phi_O(O)$$

**Spacial Distribution** 

$$\rho(t,x) = \int_0^1 \int_0^1 n(t,x,y_1,y_2) dy_1 dy_2$$



|    | HOW  |    |   |
|----|------|----|---|
| 00 | 0000 | 00 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_O \frac{\partial^2 O}{\partial x^2} - \lambda_O O - \zeta_O p_O(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

Production

$$p_G(O) = rac{\gamma_G G}{lpha_G + G} \left(1 - \phi_O(O)
ight)$$

**Spacial Distribution** 

$$\rho(t,x) = \int_0^1 \int_0^1 n(t,x,y_1,y_2) dy_1 dy_2$$



| HOW  |   |
|------|---|
| 0000 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_O \frac{\partial^2 O}{\partial x^2} - \lambda_O O - \zeta_O p_O(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

### Elements

Cancer cells density

- Diffusion
- Random mutation

Fitness

| HOW  |   |
|------|---|
| 0000 | 0 |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_0 \frac{\partial^2 O}{\partial x^2} - \lambda_0 O - \zeta_0 p_0(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

### Elements

- Cancer cells density
  - Diffusion
  - Random mutation
  - Fitness

| HOW  |  |
|------|--|
| 0000 |  |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$\frac{\partial O}{\partial t} = \beta_O \frac{\partial^2 O}{\partial x^2} - \lambda_O O - \zeta_O p_O(O) \rho$$
$$\frac{\partial L}{\partial t} = \beta_L \frac{\partial^2 L}{\partial x^2} - \lambda_L L + \zeta_L p_g(O) \rho$$

### Elements

Cancer cells density

- Diffusion
- Random mutation

Fitness

| HOW  |  |
|------|--|
| 0000 |  |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$R(O, L, \rho, \mathbf{y}) = \mathbf{p}_O(O) - S(O, L, \mathbf{y}) - D(\rho)$$

#### Fitness

Cancer cells density

- Proliferation
- Selection
- Death

| HOW  |  |
|------|--|
| 0000 |  |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$R(O, L, \rho, \mathbf{y}) = p_O(O) - S(O, L, \mathbf{y}) - D(\rho)$$

### Fitness

Cancer cells density

- Proliferation
- Selection
- Death

#### Death

Space-competition-induced death  $D(\rho) = \kappa \rho$ 

| HOW  |  |
|------|--|
| 0000 |  |

$$\frac{\partial n}{\partial t} = \beta_n \frac{\partial^2 n}{\partial x^2} + \theta \left( \frac{\partial^2 n}{\partial y_1^2} + \frac{\partial^2 n}{\partial y_2^2} \right) + R(O, L, \rho, \mathbf{y}) n$$
$$R(O, L, \rho, \mathbf{y}) = p_O(O) - S(O, L, \mathbf{y}) - D(\rho)$$

#### Fitness

Cancer cells density

- Proliferation
- Selection
- Death

### Selection

Oxygen-driven:

$$S_L(L, y_1) = \eta_L \left( y_1 - \phi_L(L) \right)^2$$

Lactate-driven:  $S_O(O, y_2) = \eta_O (y_2 - \phi_O(O))^2$ 

| HOW  |  |
|------|--|
| 0000 |  |

## HOW: Our results



|    | HOW  |    | wно |
|----|------|----|-----|
| 00 | 0000 | 00 | 0   |

and a

## HOW: Our results



| HOW  |  |
|------|--|
| 0000 |  |

## HOW: Our results



|    | HOW |    |   |
|----|-----|----|---|
| 00 | 000 | 00 | 0 |

## HOW: Therapies (next step)

- Chemotherapy
- Radiotherapy
- Surgery

The structure of the models allows to keep into account:

- geometry of the therapy
- effect on therapy efficacy of the resistance to hypoxia/acidosis
- effect of therapy on remaining cells (if any)

H. Namazi et al., Scientific Reports volume 5 (2015) A. Nagai et al., Journal of Radiation Research (2017) https://orchid-cancer.org.uk/



| HOW | WHY |  |
|-----|-----|--|
|     | 00  |  |

### WHY: Classifying Tumors

PARTIAL AIM: classifying cancers in macro areas (eco-evo index)



C. Maley et al., Classifying the evolutionary and ecological features of neoplasms, Nature (2017)



Choice of the best therapy



Giulia Chiari



# Thank you for your attention